Endoscopic Third Ventriculostomy in Previously Shunted Children Admitted with Shunt Malfunction

Farideh Nejat, Zohreh Habibi. Pediatric neurosurgery department, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
ETV is used for management of shunt failure; malfunction, infection

- 65% success rate in Adult cohort (n=51)
 Neurosurgery focus 2016 Sep;41(3):E3
- 70% Success rate in children (n=63) Neurosurgery 2005 Nov;103(5 Suppl):393-400.
- 80% Success rate in children (n=45) Neurosurgery 2008 Jul;63(1)
- Longer time to failure for ETV in shunted patients comparing to primary ETV
 j neurosurgery 2005 ;103(5):393-400
N=33 (2008-2014)

• Retrospective study
• Age: 5 months to 13 years / Mean 4.5 years
• 67% were male **** Male / female 22/11
• Most common cause of hydrocephalus: Myelomeningocele and then aqueduct stenosis, Prematurity IVH, Dandy Walker syndrome and tumor
• Time interval between first shunt surgery and ETV was 4 m to 12 y (mean= 20 m)
• Infection= 16/ malfunction=17
• RICP (headache, increased HC, tens fontanel, vomiting, papilledema)= 31
• Seizure=2
• Motor regression=2
• Exclusion criteria: child with coma or posturing, very small size ventricle, unable to perform MRI, no good space in front of basilar artery
• Infection associated with malfunction: shunt removal + antibiotics and then ETV

• Malfunction: mostly blocked proximal catheter but 5 with shunt fracture or dehiscence
ETV performed after diagnosis/ no approach to shunt
Results:

- No need to revise shunt = 20
- Required approach to shunt after ETV failure = 13
- No serious complication during ETV
- Follow up time after successful ETV: 12-50 m (Mean = 18 m)
- Interval between ETV and new shunt approach: 5-50 m (mean = 25 m)
Conclusion

• Consider ETV in patients with previous shunt and new shunt failure
• Acceptable success rate (68%)
• Long follow up is needed